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Abstract We provide a formal definition and study the basic properties of partially ordered
random fields (PORF). These systems were proposed to model textures in image processing
and to represent independence relations between random variables in statistics (in the latter
case they are known as Bayesian networks). Our random fields are a generalization of prob-
abilistic cellular automata (PCA) and their theory has features intermediate between that
of discrete-time processes and the theory of statistical mechanical lattice fields. Its proper
definition is based on the notion of partially ordered specification (POS), in close analogy
to the theory of Gibbs measures. This paper contains two types of results. First, we present
the basic elements of the general theory of PORFs: basic geometrical issues, definition in
terms of conditional probability kernels, extremal decomposition, extremality and triviality,
reconstruction starting from single-site kernels, relations between POM and Gibbs fields.
Second, we prove three uniqueness criteria that correspond to the criteria known as uniform
boundedness, Dobrushin uniqueness and disagreement percolation in the theory of Gibbs
measures.
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1 Framework

The name partially ordered Markov model (POMM) first appeared in two articles in sta-
tistics [2, 3] dealing with the analysis of black-and-white textures in images. The authors
described some basic features of the models and showed its efficiency for the storing and
simulation of some well-chosen textures. Independently, closely related models—called
Bayesian networks—have been used, also in statistics, to model networks of conditional
independence relations between large numbers of random variables (see, for instance, [18]).
These networks need not be Markovian, in fact the Markovian version is also known as
Markov blankets. For concreteness, we call partially ordered model (POM) the general,
non-necessarily Markovian, version which is the object of our work.

The increasing popularity of these networks justifies, in our opinion, their formal study as
probabilistic objects. Indeed, these objects have a number of interesting features which place
them in between two vastly studied categories of models—probabilistic cellular automata
(PCA) and lattice Gibbsian fields. On the one hand, POMs generalize PCAs by replacing
the totally ordered time axis by a partially ordered lattice. On the other hand, POMs are
also random fields described by finite-region conditional probabilities which, however, are
measurable only with respect to the partial past, rather than to the whole exterior of the
region as in the Gibbsian case.

In this paper, we first discuss the proper definition of POMs as measures consistent with
appropriate conditional kernels. Some geometrical issues need to be settled, regarding al-
lowed regions—good regions or time boxes— for the development of the theory. These are
regions whose (partial) past is separated from the (partial) future, a fact that prevents mea-
surability conflicts. We also explicitly determine the “(re)construction” procedure that yields
the whole of the specification starting from single-site kernels. The existence of this proce-
dure justifies the study of POMs in terms of single-site conditional probabilities only, as is
usually done, without warning, in the literature. This is in analogy to the study of PCAs,
which is based in single-time transition kernels. Next, we turn to the general “phase dia-
gram” theory, developed along the lines of Gibbsian theory. In general, a partially ordered
specification can have several consistent measures, each of which we call a partially ordered
random field (PORF). We show that random fields that are extremal under convex decom-
positions satisfy tail-field triviality and mixing properties analogous to those of phases in
statistical mechanics. To further the study of phase diagrams, we also discuss FKG-like
inequalities for POMs.

The present “statistical mechanical” treatment generalizes work done for discrete-time
processes [13]. Related issues were addressed for PCAs in the fundamental work done in
[20, 21]; see also [17]. In these references, the statistical mechanical features of the theory
of PCAs are studied by relating them to Gibbs fields in one more dimension. Unlike the
present paper, this strategy involves a restriction to translation-invariant PCAs.

The second family of results presented here involves a series of uniqueness criteria,
that is, conditions under which a POM admits only one consistent PORF. We present three
different criteria that correspond to similar results within the theory of Gibbsian measures:

(i) Uniform boundedness criterion: There is a unique consistent PORF if the effect of
changing boundary conditions is bounded by multiplicative factors at the level of ker-
nels. In a Gibbsian setting, this corresponds to finite energy differences between ex-
ternal conditions. Such a condition explains, for instance, why all Markov—or, more
generally, finite-range or tail-summable—one-dimensional models do not exhibit phase
transitions. In our setting, the criterion is also useful only for models that are, in some
sense, “one-dimensional”.
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(ii) Dobrushin criterion: A POM has a unique PORF if the sum of the oscillations of the
single-site kernels is smaller than one. This sum of oscillations is, in most cases, nu-
merically computable, a fact that opens the way for computer-assisted proofs [6]. Such
a criterion generalizes the Dobrushin criterion previously proven both for Markovian
PCAs [23] and for (non-necessarily Markovian) chains [14].

(iii) Disagreement percolation criterion: A duplicated system is proposed and the sites
where both copies disagree are registered. Uniqueness holds if a coupling—that is,
a simultaneous realization of both copies—can be defined such that these disagreement
sites do not percolate. This criterion, which has been very successful for Gibbsian mea-
sures [26, 27], applies only in the Markovian framework.

Through our paper, we illustrate our results through two simple but revealing examples:
the POMM-Ising and percolation models.

2 Set-up and Examples

2.1 The Issue

The basic ingredients of our models are:

(i) A countable (partially) ordered set (S,≤), called the space of sites. Each site x ∈ S

determines a past x− = {y ∈ S : y < x} and a future x+ = {y ∈ S : y > x} .
(ii) A measurable set (E, E ), the space of colors, which, in general, needs not be supposed

either finite or countable.
(iii) The product space (�, F) = (ES, E S)—the configuration space. If ϒ ⊂ S, Fϒ de-

notes the sub-σ -algebra of F generated by the cylinders with base in Eϒ . We shall use
lowercase Greek letters—ω, σ , . . . —for configurations in �, and the restriction of a
configuration ω to a set of sites ϒ will be denoted ωϒ . If ϒ = {x} the braces will be
omitted (ωx, Fx , etc.).

(iv) A family of single-site oriented kernels {γx( · , · ) : x ∈ S}, where each γx(dξ,ω) is a
probability measure on Fxc+ with respect to the first argument and a measurable function
with respect to the second one. The kernel is oriented in that for every event A on the
site x, γx(A. · ) depends only on the past x−.

The object of our study are measures μ on (�, F) that are consistent with the kernels
{γx}. Consistency can be understood in two senses:

(C1) μ is the limit of the iterated application of the kernels from past to future.
(C2) μ is such that γx is its conditional expectation on the site x given its past.

In the sections that follow we present the proper mathematical statements of these two
characterizations and the proof of their equivalence. Before that, let us turn to two examples
to be used as illustration in the rest of the paper.

2.2 Benchmark Examples

In order to show the large variety of application of the POM, we present two examples with
different geometries. The first one, the POMM-Ising model is based on Z

2, the second one
is based on the infinite n-tree Tn.
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2.2.1 The POMM-Ising Model

The first example refers to S = Z
2 with the natural partial order

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2. (2.1)

Unless otherwise specified, this will be the order understood in the drawings of our arti-
cle. Furthermore, in these drawings the vertical axis will be oriented downwards, following
a widespread convention in computer science.

Our first benchmark model is defined in terms of the spatial operators:

N : Z
2 → Z

2 : x = (x1, x2) �→ Nx = (x1, x2 − 1),

W : Z
2 → Z

2 : x = (x1, x2) �→ Wx = (x1 − 1, x2)

[N stands for Northern neighbor and W for Western neighbor].
This model is the partially oriented version of the 2-dimensional Ising model in statisti-

cal mechanics. The color space has only two elements: E = {−1,+1} and the kernels are
determined by two parameters h ∈ R and β > 0. By analogy to its statistical-mechanical
meaning, we shall call h the magnetic field and β the inverse temperature. The single-site
kernels are of the form:

∀ξ ∈ �, ∀σ ∈ E, I{x}(σ, ξ) := 1

Zξ

exp[βσ(ξNx + ξWx + h)] (2.2)

where Zξ is the normalizing coefficient:

Zξ := exp[−β(ξNx + ξWx + h)] + exp[β(ξNx + ξWx + h)].
Note that if h = 0 the model becomes a voter model:

I{x}(σ, ξ) =
{

1 − ε if ξNx = ξWx = σ

1/2 if ξNx 
= ξWx

(2.3)

where ε = e−2β /[e2β + e−2β ] ∈ (0,1/2).
Figure 1 shows simulations of the resulting PORF. Without magnetic field, the low-β

(high temperature) configurations are very disordered while texture appears at high-β . The
behavior, however, is drastically changed by the presence of even a small magnetic field.

We show in [5] that this model has no phase transition: for any value of β and h there
exists only one I -PORF.

2.2.2 The Percolation Model

This model is based on the infinite n-tree Tn. In this geometry, every node (site) has a single
root and n descendant nodes. The order is oriented to the root: descendant nodes are smaller
than the root.

Let us note ∂x the set of descendant nodes of a site x.
The color space is E = {0,1}, and the single site kernels are

S{x}(σ = 1, ξ) :=
{

p if
∑

y∈∂x ξy > 0,

0 otherwise,
(2.4)

for some p ∈ [0,1].
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Fig. 1 Simulations of the POMM-Ising model. Color 1 is black and −1 is white

This model can be seen as a model for oriented percolation. A site can become occupied
(σx = 1) only if one of its nearest-past neighbors is occupied. Starting from the boundary
of a box, we can see that this process produces clusters with the Bernoulli law of classical
oriented percolation. Existence of an infinite cluster in the latter is, therefore, equivalent to
the existence of a PORF ν with ν({σ0 = 1}) > 0. Since the δ-measure concentrated on the
“all 0”-configuration is clearly always consistent with this POM, the existence of an infinite
cluster in oriented independent percolation becomes equivalent to the existence of more than
one PORF, that is, on the occurrence of a phase transition. The critical value p+

c for oriented
percolation corresponds, then, to a value such that for p < p+

c there exists a unique S -PORF
while uniqueness is lost for p > p+

c .

3 Formal Definitions

3.1 Geometrical Aspects

The proper definition of POMs requires some preliminary geometric considerations. Let
(S,≤) be a countable (partially) ordered set.

Definition 3.1 Let ϒ ⊂ S. We define:

(i) The maxima and minima of ϒ ,

max(ϒ) := {x ∈ ϒ; ∀y > x, y 
∈ ϒ} ,

min(ϒ) := {x ∈ ϒ; ∀y < x, y 
∈ ϒ} .
(3.1)

(ii) The past of ϒ ,

ϒ− := {x ∈ S,x /∈ ϒ; ∃y ∈ ϒ,x < y} . (3.2)

(iii) The future of ϒ ,

ϒ+ := {x ∈ S,x /∈ ϒ; ∃y ∈ ϒ,x > y} . (3.3)

(iv) The outer time of ϒ ,

ϒ∗ := {x ∈ S; ∀y ∈ ϒ,x is unrelated to y} . (3.4)
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Fig. 2 Z
2 is endowed with its

natural partial order (2.1). The
orientation is from the left-up
corner to the right-down one,
according to computer science
conventions. If we denote 
 the
grey box, the symbol * stands for

∗ , – for 
− and + for 
+ .
(a), (b) bad boxes; (c), (d) time
boxes

In the whole article we assume that the following properties hold for all x ∈ S:

(a) max({x}−) is finite,
(b) min({x}+) is finite,
(c) ∀y < x, ∃y0 ∈ max({x}−), y ≤ y0 < x, and
(d) ∀z > x, ∃z0 ∈ min({x}+), z ≥ z0 > x.

Note that (c) and (d) imply that max({x}−) 
= ∅ and min({x}+) 
= ∅. S = Z ×Q endowed
with the “natural” partial order shows that this is not equivalent.

Moreover, we will suppose that S does not contain minimal points: min(S) = ∅. This last
hypothesis is not really crucial, but allows us to avoid the uninteresting case where there are
sites at the infinite past.

Definition 3.2 Let 
 be a finite part of S. We say that 
 is a time box if 
− ∩ 
+ = ∅, and
a bad box otherwise. The set of time boxes is denoted by Tb .

Intuitively, time boxes have no holes because sites in a hole are in the past of some sites
of the box but in the future of other box sites. Our partially ordered kernels only make sense
for time boxes, because they must depend on the past but, at the same time, are forbidden to
say anything about the future. Let us see what a time box means in two typical cases.

Examples 3.3

1. S = Z with its natural (total) order: Since it is a total order, there is no outer time and
Tb is exactly the set of finite intervals. The resulting POMs are, in fact, the left interval
specifications [13, 22]) found in the study of discrete-time processes.

2. S = Z
2 with the natural partial order (2.1). Figure 2 shows examples of time boxes and

bad boxes.
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In the sequel we will denote time boxes by 
, � or �, and reserve ϒ for subsets of S

without any assumption. For a time box 
, let us denote


c
+ := S\
+, 
∗

− := 
− ∪ 
∗. (3.5)

For x ∈ S, we shall abbreviate x− := {x}− and x+ := {x}+.

Remarks 3.4

1. Tb is not empty. Indeed, for every single site x ∈ S, {x} is a time box.
2. For any time box 
, {
, 
+, 
−, 
∗} is a partition of S.
3. If 
 is a time box, 
∗− = 
c+\
 and 
− ⊂ 
∗− ⊂ 
c+.

3.2 Probabilistic Notions

We turn now to the definition of kernels (POMs) and consistent measures (PORFs).

Definition 3.5 Let 
 be a time box. A proper oriented kernel γ
 on 
 is a function γ
 :
F
c+ × � −→ [0,1] satisfying the following properties:

(i) For each ω ∈ �, γ
(·,ω) is a probability measure,
(ii) For each A ∈ F
c+ , γ
(A, ·) is F
∗− -measurable,

(iii) For each A ∈ F
, γ
(A, ·) is F
− -measurable,
(iv) For each B ∈ F
∗− , and ω ∈ �, γ
(B,ω) = 1B(ω).

Properties (i) and (ii) are the usual definition of probability kernel from � to �
c+ . Prop-
erty (ii) says that the kernels carry no information on the future of 
, as is the case for the
transition probabilities of PCAs or other stochastic processes. Property (iv) expresses the
fact that the past and the outer time of 
 are frozen; randomness is present only inside 
.
In Gibbsian theory, kernels with the latter property are called proper kernels. Property (iii)
gives the kernels its oriented character: the randomness within 
 depends only on its past.

The kernels are interpreted as conditional—or transition—probabilities on 
 given the
past (of the PORFs). Therefore, we will indistinctly denote them γ
(·, ·) or γ
(·|·).

Definition 3.6 A partially oriented specification (POS) γ on (�, F) is a family of proper
oriented kernels {γ
}
∈Tb

such that

(v) For all 
,� ∈ Tb such that 
 ⊂ �,∫∫
h(ξ) γ
(dξ, σ ) γ�(dσ,ω) =

∫
h(σ) γ�(dσ,ω) (3.6)

for each F
c+ -measurable bounded function h and each configuration ω ∈ �.

This property is usually termed consistency and summarily written in the form

γ�γ
 = γ� on F
c+ ,

where the left-hand side is interpreted in the sense of composition (or convolution) of ker-
nels. In words, (3.6) means that integrating a function on 
 and then integrating the result on
� is exactly the same as integrating the function directly on �. In probabilistic terms, this
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means that γ
 is the (regular) conditional probability of γ� given F
c+ and, hence, that the
family {γ� : � ∈ Tb} is a consistent family of regular conditional probabilities. The central
issue is to find measures that realize, or “explain”, these conditional probabilities.

Definition 3.7 A probability measure μ on (�, F) is said to be consistent with a POS γ if
for each 
 ∈ Tb, ∫∫

h(ξ) γ
(dξ, σ )μ(dσ) =
∫

h(σ)μ(dσ) (3.7)

for each F
c+ -measurable bounded function h. Such a measure μ is called a γ -partially
oriented random field or a γ -PORF. The set of γ -PORFs will be denoted by G(γ ).

Conditions (3.7), which can be more briefly written as

μγ
 = μ on F
c+ , (3.8)

correspond to the DLR equations of statistical mechanics [15]. They are the � → S limit
(“infinite-volume” or “thermodynamic” limit) of the consistency condition (3.6) and are
equivalent to demanding that each γ
 be the conditional expectation of μ (restricted to
F
c+ ) given the past of 
. Thus, we have a typically statistical mechanical situation: Data—
the model—comes in the form of a family of conditional probabilities and the problem is to
find measures that realize them. The objective of the theory is to make a catalog of consistent
measures and their properties. Borrowing standard statistical mechanical nomenclature, we
will sometimes refer to consistent measures as phases. In particular we may refer to phase
coexistence if |G(γ )| > 1.

Let us now define important particular classes of POMs which are the analogues of well
studied classes of processes and fields.

Definition 3.8 Let x ∈ S and 
 ∈ Tb.

(i) The nearest past of x and 
 are

∂x := max(x−), ∂
 :=
(⋃

x∈


∂x

)
\
. (3.9)

(ii) More generally, for k ∈ N, the k-past of x and 
 are the sets ∂kx and ∂k
 iteratively
defined as ∂k
 := ∂(∂k−1
) ∪ ∂k−1
.

Note that sites can be in different k-pasts. This implies that, in general, ∂kx is not a time
box (except for ∂x). See Fig. 3.

Definition 3.9 A POS γ is local if there exists k ∈ N such that for all 
 ∈ Tb and all
A ∈ F
, γ
(A|·) is F∂k
-measurable. In the literature, the term partially ordered Markov
model (POMM) has been reserved for the case k = 1, but the actual value of k plays little
role in the theory. A probability measure on (�, F) consistent with a POS of each of these
types is called, respectively, a partially ordered local random field and partially ordered
Markov random field.

POMMs, or local POS, are the analogues of Markov chains for partially ordered “time”.
Their natural generalization are kernels depending on the whole past, but in a manner asymp-
totically insensitive to the farther past. These are formalized in the definition that follows.
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Fig. 3 An example of geometry
that shows that ∂2x can be a bad
box. Arrows indicate the partial
order: they go from small sites to
big sites

Definition 3.10

(i) A measurable function f is quasilocal if it is the uniform limit of local functions, or,
equivalently, if for all ε > 0 there exists a finite 
 ⊂ S such that

sup
ω,σ :ω
=σ


∣∣f (ω) − f (σ)
∣∣ < ε.

(ii) A POS γ is quasilocal if γ
(A, ·) is quasilocal for all local event A and all time box 


such that A ∈ F
c+ .

A partially ordered quasilocal random field is a probability measure consistent with a qua-
silocal POS.

In statistical mechanics, quasilocal specifications play a central role because they cor-
respond to the Gibbs measures introduced in physics through interactions and Boltzmann
weights. We do not explore here the particular features of their partially ordered counter-
parts, except for the existence issue. Indeed, when the color space E is compact (for in-
stance, finite) a simple compactness argument (Theorem 4.8 below) shows that every quasi-
local POS has at least one consistent measure (obtained as the weak limit of some sequence
γ
n( · | ωn) with 
n → S).

4 Results

In this section we summarize our results. Proofs are presented in the sections that follow.

4.1 Properties of Kernels

We begin with some elementary properties that follow directly from Definition 3.5.

Proposition 4.1 Let 
 ∈ Tb and γ
 be a proper oriented kernel.

(i) For all A ∈ F
 and B ∈ F
∗− ,

γ
(A ∩ B|ω) = 1B(ω)γ
(A|ω).

(ii) If f is an Fϒ -measurable function for ϒ ⊂ 
c+, then γ
(f ) := γ
(f, ·) is F
−∪(ϒ\
)-
measurable.

(iii) If γ̄
 is a proper oriented kernel on 
 such that γ
(f ) = γ̄
(f ) for all F
-measurable
functions f , then γ
 = γ̄
.
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Remarks 4.2

(a) Part (i) shows that

γ
(dσ |ω) = γ̄
(dσ
|ω)1ω
∗−
(σ
∗−) (4.1)

where γ̄
 is a kernel on 
. This explicitly shows that the past is indeed frozen. In the
sequel, we shall use this property without distinguishing γ̄ from γ .

(b) In particular, part(ii) implies that if f is F
∪
− -measurable then γ
(f ) is F
− -
measurable. In other words, no dependency of 
∗ is added by applying γ
 to f . What
happens in 
∗ does not influence what happens in 
.

For the next two results we suppose a countable color space E. The first result shows that
a POS is characterized by—can be reconstructed from—the single-site kernels. The second
result shows that, in fact, any family of single-site proper oriented kernels can be used to
build a POS.

Theorem 4.3 (Reconstruction Theorem) Assume E countable and consider a POS γ and
� ∈ Tb . Then, there exists a sequence x1, . . . , xn of the points of � such that

γ� = γx1 · · ·γxn .

The following theorem justifies the usual practice of defining PORFs—in particular
PCA—only through single-site kernels.

Theorem 4.4 (Construction Theorem) Assume E countable. For each family (γx)x∈S of
single-site proper oriented kernels there exists a unique POS γ = (γ�)�∈Tb

such that γ{x} =
γx for all x ∈ S. Furthermore,

G(γ ) = {μ : μγx = μ, for all x ∈ S}. (4.2)

There is a conceptual difference between Theorem 4.3 and Theorem 4.4. In the first one,
we start with a POS and we reconstruct the kernel in 
 with single-site kernels. In the second
one, we start with a family of single-site kernels and we construct a POS compatible with it.

The unconstrained freedom to define single-site kernels leading to POS puts the latter
on an equal footing with discrete-time processes. In contrast, single-site kernels for ran-
dom fields need to satisfy some further compatibility conditions in order to give rise to full
specifications [7–9, 12, 14].

4.2 Properties of Random Fields

The theorems of this subsection show why, as for processes and statistical mechanical fields,
interest focuses on random fields that are extremal points of the convex set G . Indeed, the
following theorems show that these measures satisfy the following properties:

(a) They are determined by the “initial” set-up on the (infinitely far away) past.
(b) They enjoy a very general mixing property: colors at far away sites behave almost inde-

pendently.
(c) They behave deterministically on “global” observables.
(d) They can be “locally seen” in the sense that they can be approximated by finite-region

kernels.



486 V. Deveaux, R. Fernández

Fig. 4 For two independent
random fields on Z, the indicated
sites x and y have x− ∩ y− = ∅

These are precisely the properties expected for physical “macroscopic” systems.
Our theorems refer to the σ -algebra

F−∞ :=
⋂


∈Tb

F
∗− . (4.3)

Its elements can be roughly interpreted as events that do not depend on any finite family of
sites. This interpretation, however, has to be taken with a grain of salt. Indeed, on the one
hand the sites refer to exteriors of time boxes only and, on the other hand, the full comple-
ment of the future is involved. In fact, the definition of F−∞ as

⋂

∈Tb

F
− is unsuitable
because it may happen that there exist x, y ∈ S such that x− ∩ y− = ∅ (see Fig. 4 for an
example). In this case,

⋂

∈Tb

F
− = {�,∅}. Lemma 8.1 below shows that definition (4.3)
never leads to such a trivial σ -algebra.

Our results are summarized in three theorems.

Theorem 4.5 Let γ be a POS on (�, F). The following properties hold:

(a) G(γ ) is a convex set.
(b) A measure μ is extremal in G(γ ) if and only if it is trivial on F−∞.
(c) Let μ ∈ G(γ ) and ν be a measure on F such that ν � μ. Then ν ∈ G(γ ) if and only if

there exists a nonnegative F−∞-measurable function h such that ν = hμ.
(d) Each μ ∈ G(γ ) is uniquely determined [within G(γ )] by its restriction to F−∞.
(e) Two distinct extremal elements of G(γ ) are mutually singular on F−∞.

Theorem 4.6 For each probability measure μ on (�, F), the following statements are
equivalent:

(a) μ is trivial on F−∞.
(b) For all cylinder sets A ∈ F ,

lim

↑S

sup
B∈F
∗−

|μ(A ∩ B) − μ(A)μ(B)| = 0. (4.4)

(c) For all A ∈ F ,

lim

↑S

sup
B∈F
∗−

|μ(A ∩ B) − μ(A)μ(B)| = 0. (4.5)

Theorem 4.7 Let γ be a POS, μ an extremal point of G(γ ) and (
n)n∈N a sequence of time
boxes such that 
n ↑ S. Then

(i) γ
n(h) → μ(h) μ-a.s. for each bounded local function h on �.
(ii) If � is a compact metric space, then for μ-almost all ω ∈ �

γ
n(h | ω) −−−→
n→∞ μ(h) (4.6)

for all continuous local functions h on �.
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Notice that in part (i) the set of full measure where convergence takes place can, in
general, be different for different h. In contrast, in (ii) there is a full-measure set where the
convergence holds simultaneously for all local continuous h. This last convergence can be
interpreted as the possibility to understand an extremal measure by observing kernels in big
but finite boxes with a typical past condition. In particular, this feature holds for models with
finite color space E.

We conclude with an existence theorem for quasilocal POS.

Theorem 4.8 Let γ be a quasilocal POS.

(i) Let (νn) be a sequence of probability measures on � and (
n) a sequence of time boxes
such that there exists a probability measure μ with

lim
n

∫
νn(dω)γ
n(h | ω) = μ(h) (4.7)

for all continuous local functions h on �. Then μ ∈ G(γ ).

If, in addition, � is separable and compact,

(ii) G(γ ) 
= ∅.
(iii) If there exist a local function h and two configurations ω1,ω2 ∈ � such that

lim
n→∞γ
n(h|ω1) 
= lim

n→∞γ
n(h|ω2)

then,
∣∣G(γ )

∣∣ ≥ 2 (γ exhibits “phase coexistence”).

4.3 Inequalities Related to Color Ordering

We group under this heading a number of results derived from the presence of a total order
on the color space E. We fix a total order for E and consider the induced partial order on �:

ω ≤ η ⇐⇒ ∀x ∈ S, ωx ≤ ηx.

[We use the same symbol for the orders on S, on � and on E; the context determines which
one applies.] An order leads to the associated notions of increasing and decreasing functions,
as well as a corresponding notion at the level of measures.

Definition 4.9 Let μ and ν be two probability measures on the same (partially) ordered
space X. We say that μ is stochastically dominated by ν and we denote μ � ν if μ(f ) ≤
ν(f ) for all non-decreasing bounded measurable functions f .

The main results in this section are summarized in the following theorem, which is a
transcription to the POS setting of the FKG (Fortuin-Kasteleyn-Ginibre) inequalities, a well
known tool in statistical mechanics.

Theorem 4.10 (FKG) Let γ be a POS such that for all y ∈ S, a ∈ E and ω,η ∈ � with
ω ≤ η,

γy(σy ≥ a|ω) ≤ γy(σy ≥ a|η). (4.8)

Then it satisfies the following FKG inequalities:
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(i) For all 
 ∈ Tb,

γ
(· | ω) � γ
(· | η) on F
c+ . (4.9)

(ii) For all local increasing functions f,g, for all � ∈ Tb such that Supp(f ) and Supp(g)

are in �c+ and for all ω ∈ �,

γ�(fg|ω) ≥ γ�(f |ω)γ�(g|ω). (4.10)

(iii) For all extremal measures μ in G(γ ) and all increasing functions f , g,

μ(fg) ≥ μ(f )μ(g). (4.11)

These inequalities provide a very powerful tool for the study of PORFs. The following
theorem summarizes the most common form of exploiting them.

Theorem 4.11 Consider a quasilocal POM with a color-ordering such that:

(a) maxE = {u} and minE = {d} for some colors u,d ∈ E.
(b) The model satisfies hypothesis (4.8) of the previous theorem.

Let us denote ⊕, resp. �, the “all up”, resp. “all-down”, configurations (⊕x = u, �x = d

for all x ∈ S). Then,

(i) For every time box 
 and every configuration ω,

γ
(· | �) � γ
(· | ω) � γ
(· | ⊕) on F
c+ . (4.12)

(ii) For all time boxes 
,� such that 
 ⊂ � and 
+ ∩ � = ∅,

γ�(f | ⊕) ≤ γ
(f | ⊕) (4.13)

for all increasing F
-measurable functions f .
(iii) The weak limits

μ⊕ := lim

↑S

γ
(· | ⊕), μ� := lim

↑S

γ
(· | �) (4.14)

exist and belong to G(γ ).
(iv) μ⊕ and μ� are the only extremal γ -PORF.
(v) |G(γ )| = 1 if, and only if, μ⊕ = μ�.

In particular, the theorem applies to our benchmark examples.

Proposition 4.12 The POMM-Ising and percolation models introduced in Sect. 2.2 above
satisfy hypothesis (a) and (b) of Theorem 4.11 with u = 1 and d = −1 (Ising) or d = 0
(percolation). Therefore conclusions (i)–(v) of the theorem hold for these models.

In fact, with a little more work one can prove that for both the POMM-Ising and perco-
lation models

μ⊕ = μ� ⇐⇒ μ⊕(σ(0,0)) = μ�(σ(0,0)). (4.15)

The proof is an adaptation of [19]. As a consequence, in both cases, the uniqueness of the
consistent PORF is equivalent to the condition limn γ (σ(0,0) | �) = limn γ (σ(0,0) | ⊕). In
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particular, for the percolation model μ� is just the Dirac measure concentrated in the “all
zero” configuration. Then, there is phase coexistence if, and only if, there exists a consistent
measure ν such that ν(σ(0,0)) > 0.

4.4 Uniqueness Criteria

Since G is convex, its cardinality can take only three values: 0, 1 or infinity. The theorems
of this subsection determine conditions for this cardinality to be at most 1. They apply to
progressively more restricted set-ups: The uniform-boundedness criterion refers to general
POMs (though it is useful only in a few), Dobrushin’s requires a countable color space and
disagreement percolation demands, in addition, Markovianness.

4.4.1 Uniform Boundedness

Our first theorem is the transcription of a theorem used in statistical mechanics to prove
that one-dimensional finite-range models do not exhibit phase coexistence (see, e.g. [15],
Sect. 8.3).

Theorem 4.13 Let γ be a POS for which there exists a constant c > 0 such that for all
cylinders A there exists a time box 
 such that A ∈ F
c+ and

∀ω, ξ ∈ � γ
(A,ω) ≥ cγ
(A, ξ). (4.16)

Then |G(γ )| ≤ 1.

This is not a very useful criterion. For local specifications it can be applied only when the
number of nearest-past sites of time boxes remains bounded as the box grows.

4.4.2 Dobrushin Criterion

We present the version useful for a countable color space E. Generalizations are possible
for metrizable E, but we focus on the simplest version for the sake of clarity. The criterion
results from a beautiful inductive argument to “clean” oscillations of conditioned averages.
Its formalization requires a few introductory definitions.

For ξ, η ∈ � and x ∈ S, let us write ξ

=x= η if ξy = ηy for all y ∈ S\{x}.

Definition 4.14 Let f : � �→ R be a measurable function.

(i) The oscillation of f with respect to the site x is

δx(f ) := sup
ξ

=x= η

∣∣f (ξ) − f (η)
∣∣. (4.17)

(ii) The total oscillation of f is

�(f ) :=
∑
x∈S

δx(f ). (4.18)

Note that every bounded local function f has bounded total oscillation and, furthermore,

sup(f ) − inf(f ) ≤ �(f ) < ∞. (4.19)
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Definition 4.15 A dust-rate matrix (αy,x)x≤y is a matrix of nonnegative real numbers such
that for all y ∈ S, αy,y = 0 and

δx(γyf ) ≤ δy(f ) αy,x (4.20)

for all x ∈ y− and all F{y}-measurable functions f .

By Proposition 4.1 there is no need to define αy,x for x ∈ y∗+. [Alternatively, we can set
αy,x := 0 if x ∈ y∗+.]

The name “dust-rate matrix” comes from an interpretation due to Aizenman: Imagine
that S is a tiling of an infinite room and associate oscillations of functions to dust. The
application of the kernel γy to f produces a new function γyf that has no “dust” at y (it no
longer depends on the color at y). Thus, γy can be thought as a broom that perfectly cleans
the site y. However, the oscillations of γyf at sites in y− will be different form the original
oscillations of f . This fact can be attributed to dust thrown out by the broom during the
cleaning of y. The coefficient αy,x represents the maximal rate of dust that can be sent from
y to x.

With this interpretation, uniqueness can be associated to the existence of a “cleaning
procedure” that successively removes dust from all sites, producing conditioned averages
with less and less oscillations. Weak limits of these averages become, therefore, insensitive
to external conditions and all lead to the same unique consistent measure. For such a program
to have a chance to succeed, each application of a broom must do some actual cleaning, that
is, the dust that flies away must be less than that was removed. In more quantitative terms,
the total dust rate must be less than one. Dobrushin criterion proves that such a condition
indeed implies uniqueness.

Theorem 4.16 Let γ be a quasi-local POS on a countable color space E. If there exists a
dust-rate matrix α such that

� := sup
y∈S

∑
x≤y

αy,x < 1 (4.21)

then there exists at most one γ -PORF.

Of course, the efficiency of this criterion crucially depends on a good estimation of the
dust-rate matrix α. The following proposition provides a reasonable estimate.

Proposition 4.17 Consider a POS γ with countable color space. Then, the numbers

αy,x = sup
ξ

=x= η

1

2

∑
a∈E

|γy(a | ξ) − γy(a | η)| (4.22)

define a dust-rate matrix. Furthermore, if |E| = 2 these are the smallest possible entries for
a dust-rate matrix.

In fact, if |E| = 2, say E = {d,u}, the expression becomes

αy,x = sup
ξ

=x= η

|γy(u | ξ) − γy(u | η)| = sup
ξ

=x= η

|γy(d | ξ) − γy(d | η)|. (4.23)
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Educated readers may have recognized that the right-hand side of (4.22) involves the varia-
tional distance between the measures γy(· | ξ) and γy(· | η) projected on �y . This is the root
of a number of extensions and generalization of the criterion that we prefer not to develop
here.

4.4.3 Oriented Disagreement Percolation

This criterion requires Markovianness, thus we will be dealing with POMMs. Also, the
color space E is assumed to be countable, though generalizations are possible. The criterion
is based on the distribution of the sites where two coupled realizations differ. Uniqueness
ensues if a coupling can be found such that these disagreement sites do not percolate. Let us
first present the oriented percolation set-up relevant for our models.

Definition 4.18 Consider a partially ordered set (S,≤) and a family of parameters p =
(px)x∈S with each px ∈ [0,1].

(i) Let ψp denote the independent Bernoulli distribution on S with parameters p. Let X ∈
{0,1}S denote a random variable with this distribution. A site x is open if Xx = 1, event
that happens with probability px . If px = q for all x ∈ S the distribution is denoted ψq .

(ii) For y < x ∈ S let

(x
>� y) = {X ∈ {0,1}S : ∃(xk)1≤k≤n with x1 = x, xn = y, xk ∈ ∂xk+1, Xxk

= 1}.
(4.24)

This is the event “there exists an oriented (towards the past) path from x to y”. (We
recall that ∂x is the nearest past of the site x, see Definition 3.8.)

(iii) A site x ∈ S belongs to an infinite oriented 1-cluster, denoted by (x
>� −∞) if there

exists an infinite decreasing sequence (yn)n∈N such that (x
>� yn) for all n ∈ N.

(iv) The distribution ψp percolates if ψp(x
>� −∞) > 0.

(v) The critical oriented percolation parameter of S is the value

p+
c := inf{q : ψq(x

>� −∞) > 0}. (4.25)

We remark that by the POS-Holley Theorem presented below (Theorem 9.3), ψq � ψq ′
whenever q < q ′ ∈ [0,1]. Hence the critical percolation parameter can be equivalently de-
fined as p+

c = sup{q : ψq(x
>� −∞) = 0}.

The disagreement criterion is based on Bernoulli percolation with parameters derived
from the POMM in the following way.

Definition 4.19 The maximal percolation parameters of a POMM γ is the family pγ =
(p

γ
x )x∈S defined by

pγ
x = sup

η,ξ∈�

1

2

∑
a∈E

|γy(a | η) − γy(a | ξ)|. (4.26)

[The right-hand side involves a variational distance, as in Proposition 4.17.] Note that, in
particular, if E = {u,d} has only two colors,

pγ
x = sup

η,ξ∈�

|γx(u | η) − γx(u | ξ)| = sup
η,ξ∈�

|γx(d | η) − γx(d | ξ)|. (4.27)

We can finally state the criterion.



492 V. Deveaux, R. Fernández

Fig. 5 Oriented 1-cluster (in
grey) versus non-oriented
1-cluster in Z

2 with our drawing
conventions

Theorem 4.20 A POMM γ on a countable color space E has a unique consistent random
field if the distribution ψpγ does not percolate.

In practice, this criterion is applied in the following form.

Corollary 4.21 A POMM γ on a countable color space E has a unique consistent random
field if

sup
x∈S

pγ
x < p+

c . (4.28)

There are two aspects that determine in practice the efficiency of this criterion. First,
we need a good estimation of the parameters p

γ
x . For civilized models, like our benchmark

examples, this is not a complicated task, and for more involved models one can resort to
calculator- or computer-assisted evaluations. A more delicate second aspect is the determi-
nation of the critical parameter p+

c for the oriented set (S,≤), a step that leads to models not
usually studied in percolation theory. However, oriented percolation is more restrictive than
unoriented percolation because clusters have to obey more constraints in the former (Fig. 5
shows an example). Therefore p+

c is not smaller than its unoriented counterpart pc and one
can always, at least as a first approximation, apply (4.28) using the better known value pc

instead of p+
c .

5 Application: Uniqueness in the Benchmark Examples

As an illustration, let us apply Dobrushin and oriented disagreement percolation criteria to
our benchmark examples.

5.1 The POMM-Ising Model

5.1.1 Dobrushin Criterion

Let αy,x be the dust-rate matrix (4.23). Since each Iy depends only on the sites Ny and
Wy, αy,z = 0 for all z ∈ S\{Ny,Wy}. By symmetry αy,Wy = αy,Ny . Furthermore, for η ∈ �,
denote ηNy,1 the configuration η where we impose ηNy = 1. We define similarly ηNy,−1.

αy,Ny = sup
η∈�

|Iy(1, ηNy,1) − Iy(1, ηNy,−1)|

= sinh(2β)

cosh(2β) + cosh(2β(|h| − 1))
.
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Fig. 6 The dark grey region
corresponds to the parameters for
which both Dobrushin and
oriented disagreement
percolation criteria (with 1/2
instead of p+

c ) can be applied. In
the light grey zone, only
Dobrushin criterion is valid. The
dashed line corresponds to the
frontier of the region obtained
with a numerically accurate value
of p+

c . In the white zone, none of
the criteria can be applied

The Dobrushin criterion gives uniqueness of the I -PORF for∑
x:x≤y

αy,x = 2αy,Ny = 2 sinh(2β)

cosh(2β) + cosh(2β(|h| − 1))
< 1. (5.1)

In particular, this shows that there is uniqueness for all β > 0 if the external field h is equal to
zero. That is, the voter model in Z

2 never exhibits phase coexistence. In fact, in a companion
paper [5] (see also [4]) uniqueness is shown to hold, through an expansion-based approach,
also for h 
= 0.

5.1.2 Oriented Disagreement Percolation

The maximal oriented percolation parameters (4.27) are

pI
x = sup

η,ξ∈�

|Ix(1, η) − Ix(1, ξ)|

= 1

2
[tanh(β(|h| + 2)) − tanh(β(|h| − 2))].

Since p+
c (Z2) > 1

2 , the disagreement-percolation criterion proves uniqueness at least if

tanh(β(|h| + 2)) − tanh(β(|h| − 2)) < 1. (5.2)

A not negligible improvement is obtained by using the more accurate value p+
c ≈ 0.64450

obtained by Monte Carlo methods [1]. It corresponds to replacing 1 by 1.289 in (5.2).
Figure 6 summarizes the different results. While Dobrushin criterion is more efficient

than disagreement percolation with 1/2 as lower bound for p+
c , the latter gives stronger

results if the numerical value is used for p+
c . There is also a large region of the (β,h)-plane

where none of our criteria gives information.

5.2 The Percolation Model

As for the preceding model, the only non-zero entries of the dust-rate matrix (4.23) are the
ones related to y and ∂y. Let x ∈ ∂y.

αy,x = sup
ηx∈{0,1}

|p1ηx>0 −p11+ηx>0 | = p. (5.3)

Hence, Dobrushin criterion proves uniqueness if np < 1.
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The maximal oriented percolation parameters (4.27) are

px = sup
η∂x ,ξ∂x∈{0,1}n

|p1∑
y∈∂x ηy>0 −p1∑

y∈∂x ξy>0 | = p. (5.4)

Disagreement percolation leads, therefore, to uniqueness for p < p+
c , which is exactly the

same condition as Dobrushin’s. In fact, this condition can be seen to be optimal: For p > p+
c

there are at least two S -PORF [4, 5].
This example can easily be generalized to any lattice with finite (oriented) neighborhood.

If such a lattice has n past neighbors per site then p+
c ≤ 1/n. This bound, however, is inde-

pendent of the geometry of the lattice and, for instance, gives the same result for Z
n with its

natural partial order and for the infinite tree Tn.
We observe that the combination of the Dobrushin and disagreement percolation results

shows the well known lower bound p+
c ≥ 1/n.

6 POMM Versus PCA and Gibbs Field

6.1 POMM Versus PCA

Before starting with the formal proofs let us briefly discuss the differences between POMMs
and PCAs. We shall justify the assertion:

Every PCA is a POMM but the converse is false. (6.1)

Let us first agree on the definition of probabilistic cellular automata. The ingredients of
the standard definition (see [25]) are as follows:

• A countable set U of sites.
• For each i ∈ U , a finite set Vi ⊂ U containing i, called the neighborhood of i.
• A measurable space (E, E ) (spin values, occupation numbers, . . . ) defining what is usu-

ally called the space of (spatial) configurations (�̃ = EU, E U). We warn the reader that
what we have called configurations would correspond to space-time configurations in
PCAs.

• A family of single-site probability kernels θi from �̃ to (E, E ) interpreted as transition
probabilities. For each y ∈ �̃ and Ai ∈ E , the value of θi(Ai | y) represents the probability
of falling into Ai having started from y. Furthermore, θi(Ai | ·) is E Vi -measurable. As
customary, let us stress this fact by writing θi(Ai | yVi

).
• A transition probability kernel on �̃ defined by

P (dx | y) =
∏
i∈U

θi(dxi | yVi
). (6.2)

This corresponds to a “parallel updating” of configurations: Conditionally on y, what
happens at each site is independent of what happens at all other sites.

Iterations of the stochastic transformation (6.2) define a discrete-time stochastic process;
the orders of iteration defining a “time” axis identified with N. The iterations are started on
some initial distribution (often concentrated on a single configuration) and interest focuses
on the invariant measures of the dynamics. These measures are, in principle defined by the
consistency condition μP = μ (cf. Definition 3.7), but in reasonable cases should also be
attainable as the limit of infinitely many iterations of the dynamics. The process can also
be defined on Z, shifting the time 0 to time −n and letting n → ∞. In the case of phase
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Fig. 7 PCA seen as a POMM:
here U = Z and
Vi = {i − 1, i, i + 1}. The
central site depends on the three
sites above it

coexistence, however, such a limit can depend on the initial distribution. If this is taken as
one of the invariant measures the resulting process on Z is invariant under time shifts.

The canonical way to write a PCA as a POMM is along the following lines:

(i) The site space is S := U × Z with the partial order where the past of a point (i, t) is
formed by all points that have contributed to the transitions leading to it. Formally,

(i, t) ≤ (j, s) ⇐⇒

⎧⎪⎨
⎪⎩

(i, t) = (j, s)

or

∃(kn)0≤n≤s−t ∈ Us−t+1 k0 = j, ks−t = i, kn ∈ Vkn+1 .

(ii) The POMM is defined—via the construction theorem and identity (4.1)—by the single-
site kernels

γ(i,t)(dσi |η) := θi(dσ(i,t)|ηVi ,t−1)

for every i ∈ U and t ∈ Z.

Figure 7 gives an idea of the construction. It is straightforward to check that γ is a POMM
with slices of the form (V , t) := {(i, t) ∈ S; i ∈ V } for V ⊂ U , t ∈ Z. Therefore,

P (xV |yt−1) =
∏
i∈V

θi(xi | yVi ,t−1) =
∏
i∈V

γ(i,t)(xi | y) = γ(V,t)(xV | y)

[see Corollary 7.7 below].
We see that a PCA is a particular type of POMM with an order given by a product

structure (“flat slices”). The following is an example of a POMM that can not be written as
PCA.

Example 6.1 Let us consider the T-shaped graph S := (Z × {0}) ∪ ({0} × N). We define a
partial order on S by:

(x, i) ≤ (y, j) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i = j = 0, x ≤ y

or

i = y = 0, x ≤ j

or

x = j = 0, i ≤ y.

The geometry of S is shown in Fig. 8. It can not be written as a product of spaces because
of the shortcuts created by {0} × N.
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Fig. 8 An example of geometry
that shows that a POMM can not
be a PCA. Arrows indicate the
partial order: they go from small
sites to big sites

Incidently, either the uniform boundedness or the disagreement percolation criteria prove
that every non-null POMM based on the geometry of Example 6.1 has |G(γ )| = 1. For
instance, a Bernoulli field �q can not percolate in this graph unless q = 1 for the same
reason that this is impossible in Z. Thus, the oriented disagreement percolation criterion
leads to the conclusion that if γx(e|ω) > 0 for all x ∈ S, ω ∈ � and e ∈ E, then there is only
one γ -PORF.

6.2 POMM Versus Gibbs Specifications

In this section we link POMMs and Gibbs fields. The latter are consistent with (unoriented)
specifications defined by conditioning on the whole exterior being frozen. Such specifica-
tion is Gibbsian if kernels are non-null (definition follows) and become asymptotically in-
dependent of far away sites. In particular, non-null Markovian specifications—namely those
whose kernels depend only on neighboring exterior sites—are Gibbsian. A Gibbs measure or
field is a measure consistent with a Gibbsian specification (see [15] for precise definitions).
The following arguments show that, in the presence of non-nullness, Markovian partially
ordered random fields are Markovian Gibbs fields but the converse is not always true.

We start with two definitions.

Definition 6.2 Let γ be a POMM, x ∈ S and 
 ∈ Tb. The nearest future of x and 
 are

∂x := min(x+), ∂
 :=
(⋃

x∈


∂x

)
\
. (6.3)

Definition 6.3 A POMM γ is non-null if ∀x ∈ S, ∀η ∈ �, ∀e ∈ E, γx(e|η) > 0.

Note that, by the Reconstruction theorem, ∀
 ∈ Tb , ∀η ∈ �, ∀σ
 ∈ �
, γ
(σ
|η) > 0.
Consider now a POMM γ , ϒ be a finite part of S and 
 ∈ Tb such that (∂ϒ ∪ ∂ϒ ∪ ϒ)

⊂ 
. For σ
 ∈ �
 and η ∈ �,

Pϒ(σϒ | σ
\ϒ,η) := γ
(σϒσ
\ϒ | η)

γ
(σ
\ϒ | η)

=
∏

x∈ϒ γx(σx | σ
\{x}η)
∏

x∈∂ϒ γx(σx | σ
η)∑
σ̃ϒ∈�ϒ

∏
x∈ϒ γx(σ̃x | σ
\{x}η)

∏
x∈∂ϒ γx(σx | σ̃
η)

= 1

Z

∏
x∈ϒ

γx(σx | σ
\{x}η)
∏

x∈∂ϒ

γx(σx | σ
η). (6.4)

Here Z is a normalizing coefficient independent of σϒ . The Markovianness of γ implies
that the LHS is independent of η. Therefore (6.4) defines a Markovian (unoriented) speci-
fication. It is easy to check that every measure consistent with γ is also consistent with the
specification defined by (6.4). This shows that every partially ordered Markovian random
field is a Gibbs field.
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Fig. 9 Configuration that shows
that the Ising model is not a
POMM

For example, the Gibbs field associated with the POMM Ising model is defined on sin-
gletons by

P (σx |η) = 1

Z

eβσx (ηNx+ηWx+ηSx+ηEx)

(eβηSx (σx+ηSWx) + eβηSx (−σx+ηSWx))(eβηEx(σx+ηNEx) + eβηEx(−σx+ηNEx))

Sx, Ex, SWx and NEx correspond respectively to the southern, eastern, south-western and
north-eastern site of x. Note that the interactions between x and Nx, Wx, Ex and Sx are
ferromagnetic whereas the interaction between x and SWx and NEx are anti-ferromagnetic.
In particular, this shows that the associated Gibbs field of the POMM Ising is not the Ising
model.

In fact, the Ising model provides an example of a Markovian Gibbs field that can not be
consistent with a POMM. Indeed, if it were, the sites would be independent upon fixing the
configuration on sites Wy, Ny and Nx (see Fig. 9). This is not the case of the Ising model.

7 Proofs of the Properties of Kernels

7.1 Proof of Proposition 4.1

Proof of (i) Fix B ∈ F
∗− . For ω 
∈ B , γ
(A ∩ B|ω) = 0 and for ω ∈ B , γ
(A ∩ B|ω) ≤
γ
(A|ω). Then for all A ∈ F
, we can write γ
(A ∩ B|ω) ≤ γ
(A|ω)1B(ω). Now, by the
“proper” character of γ
 [part (iv) of Definition 3.5],

0 = (γ
(A ∩ B|ω) − γ
(A|ω)1B(ω)) + (γ
(Ac ∩ B|ω) − γ
(Ac|ω)1B(ω)).

This proves part (i) because both terms are non-positive. �

Proof of (ii) Let � = 
− ∪(ϒ\
) and ξ, η ∈ � such that ξ� = η�. Let us define fη : � �→ R

by fη(ω) := f (ω
η
c ). Since fη is F
-measurable, γ
(fη) is F
− -measurable by part (iii)
of Definition 3.5. This implies that γ
(fη, ξ) = γ
(fη, η). Moreover, by part (i), γ
(f ) =
γ
(fη). So we have

γ
(f, ξ) − γ
(f,η) = γ
(fξ , ξ) − γ
(fη, η)

= γ
(fξ , ξ) − γ
(fη, ξ)

= γ
(fξ − fη, ξ)

= 0.

The last line is due to the fact that fη = fξ because f is Fϒ -measurable. �
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Fig. 10 Typical use of
Proposition 7.1

Proof of (iii) Let g be an F
c+ -measurable function and η be a configuration. We have to
prove that γ
(g)(η) = γ̄
(g)(η). As in the proof of part (ii), let gη denote the function
defined by gη(ξ) := g(ξ
η
c ). The function gη is F
-measurable, thus

γ
(g,η) = γ
(gη, η) = γ̄
(gη, η) = γ̄
(g, η). �

7.2 Proof of the Reconstruction Theorem

7.2.1 Slicing

The reconstruction scheme is based on a procedure that we call slicing. To define it we need
a number of properties of kernels on time boxes. We prove these for general time boxes but
later will be used mostly for single-site boxes.

Proposition 7.1 Let 
,� ∈ Tb such that � ∩ 
 = ∅, � ∩ 
+ = ∅ and 
− ∩ �+ = ∅. Let
γ
 and γ� be proper oriented kernels on 
 and �. Denote � := 
 ∪ �. Then,

(i) � ∈ Tb , and �+ = 
+ ∪ (�+\
), �− = �− ∪ (
−\�),
(ii) γ� := γ�γ
 is well defined and is a proper oriented kernel on �.

Proof of (i) We show first that 
 ∩ �− = ∅: Indeed, if there exist x ∈ �− ∩ 
, there would
exist y ∈ � such that y > x. But this would imply a contradiction because y ∈ 
+ ∩ � = ∅.
As a consequence,


+ = 
+\�, �− = �−\
. (7.1)

Let us denote U� := ⋃
t∈� t− and similarly for U
 and U� . We see that �− = U�\� and

likewise for 
− and �−. Hence

�− ∪ (
−\�) = (�−\
) ∪ (
−\�)

= (U�\�) ∪ (U
\�)

= U�\�
= �−.

The proof that 
+ ∪ (�+\
) = �+ is analogous.
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To prove that � ∈ Tb we have to show that �+ ∩ �− = ∅. Our previous relations show
that

�+ ∩ �− = (
+ ∪ (�+\
)) ∩ (�− ∪ (
−\�))

= (
+ ∩ �−) ∪ (
+ ∩ (
−\�)) ∪ ((�+\
) ∩ �−) ∪ ((�+\
) ∩ (
−\�))

= 
+ ∩ �−.

If �+ ∩ �− 
= ∅, there would exist x ∈ 
+ ∩ �−. But this leads to a contradiction because
it implies the existence of y ∈ � such that x < y and thus y ∈ � ∩ 
+. This intersection is,
however, empty by the middle identity in (7.1). �

Proof of (ii) The proof involves three verifications.

γ� is well defined. Since �+ = 
+ ∪ (�+\
), we have �c+ ⊂ 
c+, so we can apply γ


on any A ∈ F�c+ . By part (ii) of Proposition 4.1, γ
(A) is Fϒ -measurable, where ϒ =

− ∪ [�c+\
] = 
− ∪ �∗− ∪ �. Moreover, ϒ ∩ �+ = (
− ∩ �+) ∪ (�∗− ∩ �+) = ∅ (the
first intersection is empty by hypothesis). Thus, it is possible to apply γ� to γ
(A). The
function γ�(A) is then well defined and is Fϒ ′ -measurable where ϒ ′ = �− ∪ [ϒ\�] =
�− ∪ �∗− = �∗−.

γ� is oriented. Indeed, by the previous result, for any A ∈ F� , the function γ�(A)

is Fϒ1 -measurable where ϒ1 = �− ∪ [[
− ∪ (�\
)]\�] = �− ∪ [(
− ∪ �)\�] =
�− ∪ (
−\�) = �−.

γ� is proper. Let B ∈ F�∗− . Since

�∗
− ∩ (
+ ∪ 
) = �∗

− ∩ 
+

⊂ �∗
− ∩ (
+ ∪ (�+\
))

⊂ �∗
− ∩ �+

= ∅,

we have �∗− ⊂ 
∗− so γ
(B) = 1B and γ
(B) is F�∗− -measurable. Finally,

�∗
− ∩ (�+ ∪ �) = �∗

− ∩ �+

= �∗
− ∩ (�+\


⊂ �∗
− ∩ (
+ ∪ (�+\
))

⊂ �∗
− ∩ �+

= ∅.

Hence γ�(B) = γ�(B) = 1B . �

Corollary 7.2 Let �,
 ∈ Tb such that � ⊂ 
∗ and denote � := � ∪ 
. Let γ� and γ
 be
proper oriented kernels on � and 
. Then,

(i) � ∈ Tb , and �+ = �+ ∪ 
+, �− = �− ∪ 
−,
(ii) γ� := γ�γ
 is well defined and is a proper oriented kernel on �,

(iii) If E is countable, γ� = γ�γ
 = γ
γ�.
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Fig. 11 Typical use of
Corollary 7.2

Proof The previous proposition proves parts (i) and (ii). Note that we can exchange the role
of � and 
, hence γ̄� := γ
γ� is a well-defined oriented kernel. By part (iii) of Proposi-
tion 4.1 it remains to prove that γ�(h) = γ̄�(h) for every F�-measurable function h. This
identity is true if h = fg with f is F�-measurable and g F
-measurable, because

γ�(fg) = γ�(f )γ
(g) = γ̄�(fg).

The equality for general h follows from the decomposition

h =
∑

σ�∈E�

σ
∈E


h(σ�σ
)1σ�
1σ


.

�

These two results give an easy way to construct proper oriented kernels on unrelated and
ordered sets. We shall apply them to families of sites called slices.

Definition 7.3 A finite set 
 ⊂ S is a slice if all points of 
 are pairwise unrelated.

Proposition 7.4

(i) A slice is a time box.
(ii) for each finite subset ϒ of S, max(ϒ) and min(ϒ) are slices.

(iii) Each finite subset of S is contained in the past of a time box.

Proof

(i) Let � be a slice and assume there exists x ∈ �− ∩ �+. Then, there exist y, z ∈ � such
that y < x and x < z. So y ≤ z, which is absurd by definition of �.

(ii) This is a simple consequence of the definitions of max, min and slice.
(iii) Let ϒ be a finite subset of S. For each x ∈ max(ϒ) choose some y > x and denote �

the set of these y (it can happen that � ∩ ϒ 
= ∅). The set max(�) is the time-box we
look for.

�
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Fig. 12 �1 is in light grey, �2
is in dark grey. �2 
= max(�)

Definition 7.5 Let � ∈ Tb and define the following sequence of slices:

�1 := min(�)

�2 := min (�\�1)

...

�k := min(�\(�1 ∪ · · · ∪ �k−1))

...

(7.2)

The slicing of � is the sequence (�1, . . . ,�n) where n is the greatest integer such that
�n 
= ∅. The nonempty �i are the slices of �.

Remark 7.6 In general, �n is not equal to max(�) but it is a subset of it. Figure 12 shows
an example of such a case.

7.2.2 Proof of Theorem 4.3

The proof has two parts: First the box is split into slices, then each slice is split into sites.

Proof Let (�1, . . . ,�n) be the slicing of � and define

γ̄� = γ�1γ�2 · · ·γ�n . (7.3)

By Proposition 7.1, γ̄� define a proper oriented kernel on �c+. Indeed, the definition of
slices implies that the sets 
k = ⋃n

i=k+1 �i , 1 ≤ k ≤ n − 1 satisfy 
k ⊂ (�k)+ ⊂ 
k ∪ �+
so (
k)+ ∩ �k = ∅ and (
k)− ∩ (�k)+ = ∅. Thus, the sets 
k satisfy the hypotheses of
Proposition 7.1.

The fact that γ̄� = γ� is a consequence of the consistency property of the POS. Indeed,
applying n times property (v) in Definition 3.6, we have that for all F�c+ -measurable func-
tions f

γ�(f ) = γ�(γ�n(f ))

...

= γ�(γ�1 · · ·γ�n(f ))

= γ�(γ̄�(f ))

= γ�(1)γ̄�(f )

= γ̄�(f ). (7.4)
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Now, if 
 = {y1 · · ·ym} be a slice, then by Corollary 7.2, γy1 · · ·γym is a proper oriented
kernel on 
. Consistency implies

γ
 = γ
(γy1 · · ·γym) = γy1 · · ·γym. (7.5)

The combination of (7.4) and (7.5) proves the theorem. �

We conclude emphasizing that by Corollary 7.2, the order of the single-site kernels within
a slice is not important.

Corollary 7.7 Let γ be a POS. Then for all � ∈ Tb and η ∈ �,

γ�(σ |η) =
∏
x∈�

γx(σx |σ�η�∗−).

7.3 Proof of the Construction Theorem

7.3.1 Construction of the POM

Let � be in Tb . If it is a slice, define

γ� := γy1 · · ·γym

where � = {y1, . . . , ym}. This is well defined according to Corollary 7.2. Otherwise, let
(�1, . . . ,�n) be the slicing of � and define

γ� := γ�1 · · ·γ�n .

By Proposition 7.1, γ� is a well defined proper oriented kernel.

7.3.2 Proof of Consistency

The rest of the proof relies on the following observation, valid for any measure μ on F and
any � ∈ Tb:

[∀x ∈ �, μγx = μ] =⇒ μγ� = μ. (7.6)

This is an immediate consequence of the fact that γ� is obtained as the iteration of single-site
kernels.

This observation directly implies (4.2). The proof of uniqueness of the POS γ is only
slightly less trivial. Indeed, consider any other POS (γ̄
)
∈Tb

consistent with the family
(γx)x∈S . By (7.6), γ̄
 must be consistent with γ
 for each 
 ∈ Tb . But then, if f is F
c+ -
measurable

γ̄
(f ) = γ̄
(γ
(f )) = γ
(f )γ̄
(1) = γ
(f ).

To conclude the theorem let us prove consistency of the kernels γ�. Let 
 ∈ Tb such that

 ⊂ �. To prove that γ�γ
 = γ� it is enough, by (7.6), to prove that γ�γy = γ� for each
y ∈ 
. Pick such a y ∈ 
 and consider any Fyc+ -measurable function h. Temporarily denote
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f := γy(h). Let p be such that y ∈ �p . Since y∗− ⊂ x∗− for each x ∈ �p+1 ∪ · · · ∪ �n,

γ�γy(h) = γ�(f ) = γ�1 · · ·γ�n(f ) = γ�1 · · ·γ�p (f ). (7.7)

Assume now that �p := {y1, . . . , ym}. Since the inter-slice order is irrelevant, we can sup-
pose that ym = y. In this case,

γ�p (f ) = γy1 · · ·γymγy(h) = γ�p (h). (7.8)

From (7.7) and (7.8) we conclude that

γ�γy(h) = γ�1 · · ·γ�p (h) = γ�(h). (7.9)

�

8 Proofs of the Properties of PORFs

8.1 Proof of Theorem 4.5

We begin with a result that in particular implies that F−∞ is not trivial.

Lemma 8.1 For all x, y ∈ S, x∗− ∩ y∗− 
= ∅.

Proof The proof is by contradiction. Assume there exist x and y such that x∗− ∩ y∗− = ∅.
Then x∗− ⊂ S\y∗− = y+ ∪ {y} and any z ∈ x− ⊂ y+ ∪ {y}, satisfies that z ≤ x and y ≤ z.
This implies that y ≤ x and hence y− ⊂ x−. This contradicts the original assumption that
x∗− ∩ y∗− = ∅. �

The proof of the theorem is based on the following two lemmas taken from [15, pp. 115–
117].

Lemma 8.2 Let (�, B) be a measurable space, π a probability kernel from B to B and μ a
measure on B such that μπ = μ. Denote

AB
π (μ) := {A ∈ B,π(A, ·) = 1A(·) μ-a.s.}

Then, AB
π (μ) is a σ -algebra and for every B-measurable nonnegative function h,

((hμ)π = hμ) ⇐⇒ (h is AB
π (μ)-measurable).

Lemma 8.3 Let (�, B) be a measurable space and � a non-empty set of kernels such that,
for all π ∈ �, π is a probability kernel from Bπ to B, where Bπ is a sub-σ -algebra of B.
Denote

G(�) := {μ ∈ P(�, B) : μπ = μ ∀π ∈ �}
the convex set of �-invariant probability measures and for μ ∈ G(�), A�(μ) :=⋂

π∈� ABπ
π (μ). Then

(μ is extremal in G(�)) ⇐⇒ (μ is trivial on A�(μ)).
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Proof of Theorem 4.5

(a) Its proof is immediate.
(b) Denote F μ

−∞ the μ-completion of F−∞. We only have to prove that F μ
−∞ = Aγ (μ),

because μ is trivial on F−∞ if and only if μ is trivial on F μ
−∞.

Let A ∈ Aγ (μ). For each time box 
, A ∈ A
F
c+
γ
 so γ
(A, ·) = 1A(·) μ-a.s. Then, 1A is

μ-a.s. F
∗− -measurable, that is, A ∈ F
∗− μ-a.s. This implies that A ∈ F μ
−∞.

Conversely, let A ∈ F μ
−∞. Thus, there exists a set B ∈ F−∞ such that A = B μ-almost

surely. Let 
 be a time box. Since B ∈ F
∗− for all 
 ∈ Tb , γ
(B, ·) = 1B(·) and B ∈ A
F
c+
γ
 .

Thus, A ∈ A
F
c+
γ
 (μ) for each time box 
, which proves that A ∈ Aγ (μ).

(c) ν � μ implies that there exists an F -measurable non-negative function f such that ν =
f μ.

ν ∈ G(γ ) ⇐⇒ ∀
 ∈ Tb, νγ
 = ν

⇐⇒ ∀
 ∈ Tb, (f μ)γ
 = f μ

⇐⇒ ∀
 ∈ Tb, f is A
F
c+
γ
 (μ)-measurable

⇐⇒ f is Aγ (μ)-measurable

⇐⇒ f is F μ
−∞-measurable

⇐⇒ ∃h F−∞-measurable such that h = f μ-a.s.

⇐⇒ ∃h F−∞-measurable such that ν = hμ.

(d) Let μ, ν ∈ G(γ ) such that their restrictions to F−∞ coincide and define μ := μ+ν

2 ∈
G(γ ). Since μ � μ, there exists a F−∞-measurable function f such that μ = f μ. But
μ = μ on F−∞, thus f = 1 μ-a.s. and as a consequence μ = μ. Analogously ν = μ.

(e) It is an immediate consequence of (b) and (d).
�

8.2 Proofs of Theorems 4.6, 4.7 and 4.8

Proof of Theorem 4.6 (c) ⇒ (b) is immediate.

(b) ⇒ (a) For B ∈ F−∞, let D := {A ∈ F : μ(A ∩ B) = μ(A)μ(B)}. The set D satisfies

• � ∈ D;
• A1,A2 ∈ D, A1 ⊂ A2 implies A2\A1 ∈ D; and
• if (An)n>0 is a sequence of disjoint sets of D then,

⋃
n>0 An ∈ D.

This makes D a Dynkin system and, hence, a sub-σ -algebra of F . Moreover, by hypothesis
all cylinders are in D, so that D = F . In particular, B ∈ F so μ(B) = μ(B)2 i.e. μ(B) ∈
{0,1}.
(a) ⇒ (c) Let A ∈ F and (
n)n>0 be an increasing sequence of time boxes which converges

to S. The reverse martingale theorem yields μ(A | F(
n)∗−)
L1−→ μ(A | F−∞). Since μ is trivial

on F−∞, μ(A | F−∞) = μ(A) μ-a.s. We deduce that

∀ε > 0, ∃� ∈ Tb : μ(|μ(A | F�∗−) − μ(A)|) < ε.



Partially Ordered Models 505

Hence, for all 
 ∈ Tb : 
 ⊃ �,

sup
B∈F
c+

|μ(A ∩ B) − μ(A)μ(B)| ≤ sup
B∈F�c+

|μ(A ∩ B) − μ(A)μ(B)|

≤ sup
B∈F�c+

|μ(1B[μ(A | F�∗−) − μ(A)])|

≤ μ(|μ(A | F�∗−) − μ(A)|)
≤ ε. �

Proof of Theorem 4.7

(i) Since μ is consistent with γ , γ
n(h) = μ(h | F(
n)c+). The reverse martingale theorem
thus yields

γ
n(h)
L1−−→

μ-a.s.
μ(h | |F−∞) = μ(h).

(ii) The result follows from (i) because the set of continuous local functions contains a
countable dense set (for the sup-norm).

�

Proof of Theorem 4.8

(i) If 
 is a time box and h a local continuous function,

μ(h) = lim
n

∫
νn(dω)γ
n(h | ω)

= lim
n

∫
νn(dω)γ
n(γ
(h) | ω)

= μ(γ
(h)).

The second identity is due to the consistency of the kernels of the POS. The last one
follows from weak convergence and the quasilocality of γ . This proves consistency of
μ with the POS γ .

(ii) By a slight strengthening of the Banach-Alaoglu theorem (e.g. Theorem 3.16 in [24]),
the space of probability measures on � endowed with the weak convergence is metriz-
able and compact. Hence every sequence of the form νnγ
n has a convergent subse-
quence whose limit is in G(γ ) by (i).

(iii) By the argument in (ii), there is a subsequence 
ni
and probability measures μ1 and

μ2 such that γ
ni
( · | ω1) → μ1 and γ
ni

( · | ω2) → μ2 weakly. By (i) μ1,μ2 ∈ G(γ )

while the hypothesis ensures that μ1 
= μ2.
�

9 Proofs of Color-ordering Inequalities

9.1 Proof of Theorem 4.10

We need an auxiliary result based on the notion of coupling.
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Definition 9.1 A coupling P between two measures μ and ν on a measurable space X is a
measure P on X2 having μ and ν as its marginals, that is such that P (A,X) = μ(A) and
P (X,A) = ν(A) for all events A.

Proposition 9.2 (Strassen Theorem) For any two probability measures μ and ν on �, the
following statements are equivalent:

1. μ � ν.
2. There exists a coupling P of μ and ν such that P (σ ≤ σ ′) = 1.

See [16] for a proof.
The following theorem is the POS counterpart of a theorem proved by Holley (see [16])

for Gibbs fields.

Theorem 9.3 (POS-Holley) Let γ and γ ′ be two POS on the same color space E, 
 ∈ Tb

and η,η′ be two configurations on 
∗−. If for all x ∈ 
, e ∈ E and ξ, ξ ′ ∈ �
∩x− satisfying
ξ ≤ ξ ′ we have

γx(σx ≥ e | ηξ) ≤ γ ′
x(σx ≥ e | η′ξ ′) (9.1)

then

γ
(· | η) � γ ′

(· | η′) on F
c+ . (9.2)

Proof We shall construct a coupling P
 between γ
(· | η) and γ ′

(· | η′) on F
 defined by

random variables (ξ
, ξ ′

) such that P
(ξ
 ≤ ξ ′


) = 1. By Strassen Theorem this proves
stochastic dominancy on F
. The extension to F
c+ follows from (4.1).

We start with single sites. For each x ∈ 
 we construct a coupling Px between γx(· | ηξ)

and γx(· | η′ξ ′) through the random variables

ξx := max{e ∈ E : γx(σx ≥ e | ηξ) ≥ Ux},
ξ ′
x := max{e ∈ E : γ ′

x(σx ≥ e | η′ξ ′) ≥ Ux}
where {Ux : x ∈ 
} is a family of independent random variables uniformly distributed on
[0,1]. Denoting Px the distribution inherited by the pair (ξx, ξ

′
x) from the distribution of Ux ,

we have that, by hypothesis (9.1),

Px(ξx ≤ ξ ′
x) = 1 (9.3)

while, clearly,

Px(σx ≥ e , σ ′
x ∈ E) = γx(σx ≥ e | ηξ). (9.4)

The reader should keep in mind that Px depends on ξ , η, ξ ′ and η′, even when we are
suppressing this dependency in the notation to avoid notational cluttering.

To construct the full coupling P
 we use the Reconstruction Theorem 4.3. Let y1, . . . , yn

be a sequence such that γ
 = γy1 · · ·γyn . We define

P
 = Py1 · · ·Pyn (9.5)

where each Pyi
is defined as above, and, for each realization of ξy1 , ξ

′
y1

, . . . , ξyn , ξ
′
yn

,

Pyn couples γyn(· | ξy1···yn−1η) and γyn(· | ξ ′
y1···yn−1

η′)
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Pyn−1 couples γyn−1(· | ξy1···yn−2η) and γyn−1(· | ξ ′
y1···yn−2

η′)

...

Py1 couples γy1(· | η) and γy1(· | η′).

Using the inductive relation

P
(A) =
∫

1A(ξ
, ξ ′

)Py1···yn−1(dξy1 , dξ ′

y1
, . . . , dξyn−1 , dxi ′

yn−1
)Pyn(dξyn , dξ ′

yn
) (9.6)

it is straightforward to verify that indeed P
 couples γ
(· | η) and γ ′

(· | η′), and that

P
(ξ
 ≤ ξ ′

) = 1. �

Proof of Theorem 4.10

(i) Proved by the previous theorem.
(ii) As a first step we show (4.10) for f,g depending only on a single site y. Fix ω ∈ � and

denote

π(·) = γy(·g | ω). (9.7)

Inequality (4.10) is trivially true for g = 0. Furthermore, for m ∈ R and α > 0, the inequal-
ity γy(fg | ω) ≥ γy(f | ω)γy(g | ω), implies both γy(f · (g + m) | ω) ≥ γy(f | ω)γy(g +
m | ω) and γy(f · (αg) | ω) ≥ γy(f | ω)γy(αg | ω). Hence, we can suppose without loss of
generality that g is strictly positive and γy(g | ω) = 1 and, therefore, that π is a probability
measure on F�y . If, for brevity, we denote

q(a) = γy(σy ≥ a | ω),

q ′(a) = π(σy ≥ a)

we see that, by the monotonicity of g, q ′(a) ≥ g(a) q(a) while 1 − q ′(a) ≤ g(a
(
1 − q(a)

)
.

Hence,

q ′(a)

1 − q ′(a)
≥ q(a)

1 − q(a)
. (9.8)

Since the function x �→ x/(1 − x) is increasing, inequality (9.8) implies that q(a) ≤ q ′(a),
that is

γy

(
σy ≥ a

∣∣ ω
) ≤ π(σy ≥ a). (9.9)

Thus, by the POS-Holley Theorem 9.3, we obtain that for all increasing F�y -measurable
functions f ,

γy(f | ω) ≤ π(f ) = γy(fg | ω) = γy(fg | ω)

γy(g | ω)
. (9.10)

This proves (4.10) for single-site increasing functions f and g.
As a second step we consider functions f and g that are Fy∗− -measurable. This can be re-

duced to the previous case through the functions fω and gω defined by fω(η) := f (ηy ωS\{y})
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[This is the same trick used in the proof of Proposition 4.1]. Applying (9.10),

γy(fg | ω) = γy(fωgω | ω)

≥ γy(fω | ω)γy(gω | ω)

= γy(f | ω)γy(g | ω)

as sought.
The third and final step involves induction on the number of sites in the time box �:

Suppose (4.10) is true for all time boxes with n sites and let � be a time box with n+1 sites.
We write the kernel γ� as γ� = γy1 · · ·γyn+1 according to the Reconstruction Theorem 4.3
and denote 
 := {y1, . . . , yn} and x := yn+1. Then,

γ�(fg | ω) = γ


(
γx(fg | ·) ∣∣ ω

)
≥ γ


(
γx(f | ·) γx(g | ·) ∣∣ ω

)
≥ γ


(
γx(f | ·) ∣∣ ω

)
γ


(
γx(g | ·) ∣∣ ω

)
≥ γ�(f | ω)γ�(g | ω).

The second inequality comes from the fact that ω �→ γx(f |ω) is an increasing function by
the POS-Holley theorem.

(iii) Its proof is just an application of Theorem 4.7. �

9.2 Proof of Theorem 4.11 and Proposition 4.12

Proof of Theorem 4.11

(i) Apply twice (i) of Theorem 4.10.
(ii) Let A := {η ∈ ��; η�\
 = ⊕�\
}. Since 1A is an increasing function, the FKG

inequality (4.10) implies

γ�(f 1A | ⊕) ≥ γ�(f | ⊕) γ�(A | ⊕).

Thus

γ
(f | ⊕) = γ�(f | A,⊕) = γ�(f 1A | ⊕)

γ�(A | ⊕)
≥ γ�(f | ⊕).

(iii) We construct μ⊕ in three steps. First, suppose that f is a local bounded increasing
function and let � ∈ Tb such that Supp(f ) ⊂ �. Choose (
n)n∈N an increasing
sequence of time boxes such that

• 
0 = �,
• for all n ∈ N, (
n)

∗
+ ∩ 
n+1 = ∅,

• limn→∞ 
n = � ∪ �−.

The sequence (μ⊕

n

(f ))n∈N is decreasing by part (ii) and bounded because so is f .
Therefore this sequence is convergent to a limit that defines μ⊕(f ). It is straightfor-
ward to see that this limit is independent of the sequence (given two such sequences
there is a larger sequence satisfying the same properties and having the initial se-
quences as subsequences).
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Second, consider a bounded local function g that is not necessarily increasing.
Such a function admits the decomposition

g(ω) =
∑

ϒ⊂Supp(g)

αϒ 1ωϒ=u

for suitable real numbers (αϒ)ϒ⊂Supp(g). As each 1ωϒ=u is an increasing function,
we take advantage of the preceding definition to define

μ⊕(g) :=
∑

ϒ⊂Supp(g)

αϒ μ⊕(1ωϒ=u).

Lastly, we define μ⊕(h) for any function h through the usual limit procedure
(“standard machine” of the construction of Lebesgue integrals). The resulting mea-
sure inherits the limit property (4.14) and is consistent with γ by (i) of Theorem 4.8.

μ� is defined analogously.
(iv)–(v) Both statements follow from the fact that, by (i) of Theorem 4.7 and (i) and (iii)

above,

μ� � μ � μ⊕ (9.11)

for each extremal measure μ ∈ G(γ ).
�

Proof of Proposition 4.12 Let ξ, η be two configurations and x ∈ S, then

ξ ≤ η ⇐⇒
∑
y∈∂x

ξy ≤
∑
y∈∂x

ηy. (9.12)

This immediately shows the validity of hypothesis (4.8) for the percolation model. For the
Ising model, (9.12) implies that

1

1 + exp(−β(ξNx + ξWx + h))
≤ 1

1 + exp(−β(ηNx + ηWx + h))
(9.13)

which, in turns, implies Ix(σ ≥ 1 | ξ) ≤ Ix(σ ≥ 1 | η). �

10 Proofs of the Uniqueness Criteria

10.1 Uniform-boundedness Criterion

Proof of Theorem 4.13 We will prove that each measure in G(γ ) is extremal, hence G(γ )

can not contain more than one element.
Let μ be in G(γ ) and B ∈ F−∞ such that μ(B) > 0. We will prove that μ(B) = 1. To

this we consider

ν( · ) := μ(· | B) = 1B( · ) μ( · )
μ(B)

. (10.1)

Since ν � μ and ω �→ 1B(ω)/μ(B) is F−∞-measurable, ν ∈ G(γ ) [part (c) of Theo-
rem 4.5]. Moreover, for all cylinders A,
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ν(A) = [ν γ
](A)

= μ(ν γ
(A))

=
∫∫

γ
(A,ω)dν(ω)dμ(ξ)

≥
∫∫

cγ
(A, ξ) dν(ω)dμ(ξ)

= cν([μγ
](A))

= cμ(A)

with 
 chosen so to satisfy the hypotheses of the theorem. The fact that ν(A) ≥ c μ(A)

for all cylinders A is tantamount to ν ≥ c μ. In particular 0 = ν(�\B) ≥ c μ(�\B), which
proves that μ(B) = 1. �

10.2 Dobrushin Criterion

We first prove two lemmas. The first one refers to the effect of the “broom” γy on functions
that depend also on colors of sites other than y.

Lemma 10.1 (Multisite Dusting Lemma) Let y ∈ S, x ∈ yc+ and f be a Fyc+ -measurable
function. Then,

δx(γyf )

⎧⎪⎨
⎪⎩

= 0 if x = y

≤ δx(f ) if x ∈ y∗

≤ δx(f ) + δy(f )αy,x if x ∈ y− (i.e. x < y).

(10.2)

Proof The case x = y is evident. For the other cases, denote fξ : E �→ R the function defined

by fξ (ηy) := f (ηyξS\{y}). Let us first consider x ∈ y−. If ξ

=x= η we have

|γy(f | ξ) − γy(f | η)| = |γy(fξ | ξ) − γy(fη | η)|
≤ |γy(fξ | ξ) − γy(fη | ξ)| + |γy(fη | ξ) − γy(fη | η)|
≤ γy(δx(f )

∣∣ ξ) + δx(γy(f ))

≤ δx(f ) + δy(f )αy,x .

For x ∈ y∗, the computation is the same except that the second term in the second line
disappears because γy(fη | ·) is Fy− -measurable. �

The second lemma establishes an order for the cleaning of sites.

Lemma 10.2 For any time-box 
 there exists a one-to-one sequence (xn)n≥1 of sites such
that

(1)
⋃

n≥1{xn} = 
 ∪ 
−.
(2)

⋃
n≤k{xn} ∈ Tb , for all k ≥ 1.

Proof The first terms of the sequence are

{x1, . . . , xr1} := max(
) = max(
 ∪ 
−).
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This finite sequence satisfies (2) because it is a slice (see Definition 7.3 and Proposition 7.4).
The remaining terms are defined iteratively by

{xrk+1, . . . , xrk+1} := max({x1, . . . , xrk }−) = max(
 ∪ 
−\{x1, . . . , xrk }).
This procedure exhausts 
 ∪ 
−, so the sequence (xn)n≥1 satisfies (1). To prove (2) it is
sufficient to show that if � ∈ Tb and x ∈ max(�−), then � ∪ {x} ∈ Tb.

Indeed, such x satisfies x+ ∩ �− = ∅ and furthermore, x ∈ �−, x− ⊂ �− and
x− ∩ �+ = ∅. These relations imply that

(� ∪ {x})+ ∩ (� ∪ {x})− = [(�+ ∪ x+) ∩ (�− ∪ x−)]\(� ∪ {x})
= [(�− ∩ x+) ∪ (�+ ∩ x−)]\(� ∪ {x})
= ∅;

which proves that � ∪ {x} ∈ Tb . �

Proof of Dobrushin Criterion Fix a local bounded function f and choose a time box 
 such
that Supp(f ) ⊂ 
 ∪ 
−. Let (yn)n∈N∗ be the sequence constructed verifying Lemma 10.2
for 
. The kernel Tn := γyn · · ·γy2γy1 is then well defined. By the multisite dusting lemma

�(T1f ) = �(γy1f ) ≤
∑
x 
=y1

[δx(f ) + δy1(f )αy1,x] ≤
∑
x 
=y1

δx(f ) + � δy1(f ).

By induction, for n ≥ 1

�(Tnf ) = �(γyn · · ·γy2(γy1f ))

≤
∑

x 
=y2,...,yn

δx(γy1f ) + �

n∑
k=2

δyk
(γy1(f ))

≤
∑

x 
=y1,...,yn

δx(f ) + �

n∑
k=2

δyk
(f ) + δy1(f )

( ∑
x 
=y1,...,yn

αy1,x + �

n∑
k=2

αy1yk

)

≤
∑

x 
=y1,...,yn

δx(f ) + �

n∑
k=1

δyk
(f ).

The last line comes from the fact that

∑
x 
=y1,...,yn

αy1,x + �

n∑
k=2

αy1,yk
≤

∑
x 
=y1

αy1,x ≤ �.

Note that, in particular, the quasilocal function Tnf has �(Tnf ) < ∞.
Let μ,ν ∈ G(γ ). To prove the criterion, it is sufficient to prove that for all local bounded

functions f we have μ(f ) = ν(f ). By consistency, we have that for all n ∈ N,

|ν(f ) − μ(f )| = |ν(Tnf ) − μ(Tnf )|
≤ �(Tnf )

≤
∑
k>n

δyk
(f ) + �

∑
k≤n

δyk
(f ).
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Letting n go to infinity, we obtain

|ν(f ) − μ(f )| ≤ ��(f ) (10.3)

for every local bounded function f . Using approximations by local functions, this inequality
extends to quasilocal functions of bounded total oscillation. We can, therefore, apply (10.3)
with f → Tnf to get

|ν(f ) − μ(f )| = |ν(Tnf ) − μ(Tnf )|
≤ ��(Tnf )

≤ �

(∑
k>n

δyk
(f ) + �

∑
k≤n

δyk
(f )

)
.

Letting n → ∞ we obtain |ν(f ) − μ(f )| ≤ �2�(f ) and, by induction, |ν(f ) − μ(f )| ≤
�m�(f ) for all m ∈ N. Since � < 1, the limit m → ∞ yields ν(f ) = μ(f ). �

Proof of Proposition 4.17 The proposition is a particular case of the following known fact.

Proposition 10.3 Let μ and ν be measures on a countable space E and f a bounded
function. Then,

|μ(f ) − ν(f )| ≤ δ(f )
1

2

∑
a∈E

|μ(a) − ν(a)| (10.4)

with equality if |E| = 2.

Proof We provide the proof for completeness. It is a particular instance of the relation be-
tween various definitions of the variational distance.

A simple calculation shows that for any fixed point e ∈ E

μ(f ) − ν(f ) =
∑
a∈E

f (a)μ(a) −
∑
a∈E

f (a) ν(a)

=
∑
a∈E
a 
=e

[f (a) − f (e)][μ(a) − ν(a)]. (10.5)

Splitting the sum according to whether or not a belongs to the set

M = {a ∈ E : μ(a) > ν(a)} (10.6)

yields

μ(f ) − ν(f ) = A − B, (10.7)

with

A =
∑
a∈M

[f (a) − f (e)][μ(a) − ν(a)],

B =
∑
a 
∈M

[f (a) − f (e)][ν(a) − μ(a)].
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At this point we choose e ∈ argminf so to have A,B ≥ 0 and

|μ(f ) − ν(f )| = max(A,B) (10.8)

[for A and B non-negative |A − B| ≤ max(A,B)]. But

A, B ≤ δ(f )[μ(M) − ν(M)]
= δ(f )[ν(Mc) − μ(Mc)] (10.9)

= δ(f )
1

2
{[μ(M) − ν(M)] + [ν(Mc) − μ(Mc)]} (10.10)

= δ(f )
1

2

∑
a∈E

|μ(a) − ν(a)|. (10.11)

If E = {a, e} (10.5) becomes

|μ(f ) − ν(f )| = [f (a) − f (e)][μ(a) − ν(a)], (10.12)

hence |μ(f ) − ν(f )| = δ(f )|μ(a) − ν(a)|. �

10.3 Oriented Disagreement Percolation Criterion

Let us start by introducing some standard notation.

Definition 10.4 Let � ⊂ S, μ and ν measures on (�, F) and � ⊂ �. The variational dis-
tance of μ and ν (projected) on � is

‖μ − ν‖� := 1

2

∑
ω∈��

∣∣μ(ω) − ν(ω)
∣∣. (10.13)

[A well known argument shows that ‖μ − ν‖� := supA∈F�
|μ(A) − ν(A)|, which is the

expression used to define variational distances on non-countable spaces. Expression (10.13)
is more useful in the countable setting supposed here.]

In the proof that follows we shall exploit the identity

‖μ − ν‖� = min{Q�({σ� 
= σ ′
�}) : Q� coupling of μ� and ν�} (10.14)

where μ� and ν� are the projections of the measures μ and ν to F�. This remarkable
equality (see e.g. pp. 61–62 in [10] for a simple proof) conveys two pieces of information.
First it relates the variational distance with the Kantorovich-Wasserstein distance defined by
the right-hand side. Second, it states that there exists a coupling that realizes the equality.
As a matter of fact, this coupling can be defined in a relatively simple explicit way (formula
(14.33) in [10] or Chap. 3 in [11]), though in the sequel only its existence plays a role.

Definition 10.5 An optimal �-coupling for the measures μ and ν is a measure P� on
(�2, F 2

�) such that

‖μ − ν‖� = P�({σ� 
= σ ′
�}). (10.15)

Such a coupling translates disagreement into distance between measures.



514 V. Deveaux, R. Fernández

Definition 10.6 For x < y ∈ S let

(y

=� x) = {(σ,σ ′) ∈ �2 : ∃(yk)1≤k≤n with y1 = y, yn = x, yk ∈ ∂yk+1, σyk


= σ ′
yk

}.
(10.16)

This is the event “there exists a downward-oriented path of disagreement from y to x”.

In the sequel the notation (�
>� 
), for �,
 ⊂ S, stands for {∃x ∈ �, ∃y ∈ 
 : (x

>�
y)}. Likewise for (�


=� 
). Furthermore we shall denote ψp,
 the restriction (projection)
or ψp to F
. The following proposition is the key tool in the proof of the criterion.

Proposition 10.7 Let γ be a POMM, 
 a time box and η, η′ two configurations. Then, there
exists an optimal 
-coupling P
 = P
,η,η′ of γ
(· | η) and γ
(· | η′) such that:

(i) ∀x ∈ 
, {σx 
= σ ′
x} = (∂



=� x) P
-a.s.,
(ii) the law of (1{σx 
=σ ′

x })x∈
, denoted by P

=

 , is such that P


=

 � ψpγ ,
.

Proof The coupling is constructed iteratively on sets �∗− with � ⊂ 
 decreasing from 
 to
the empty set. The algorithm is as follows.

Initial step. Set � = 
, and define (σ
∗− , σ ′

∗−

) = (η
∗− , η′

∗−

).

Iteration step. Suppose that (σ,σ ′) has already been defined on �∗− for a non-empty set
� ⊂ 
 and is realized as a pair (σ�∗− , σ ′

�∗−
) with (σ
∗− , σ ′


∗−
) = (η
∗− , η′


∗−
). Pick x ∈ min�

such that there exists some y ∈ ∂x ⊂ �− satisfying ξy 
= ξ ′
y . If such an x does not exist,

then γ�( · | ξ) = γ�( · | ξ ′) on F� and we define σ� = σ ′
� (obviously, an optimal coupling).

If such an x exists, we choose (σx, σ
′
x) distributed according to an optimal coupling Px of

the single-site distributions γx(· | σ) and γx(· | σ ′) restricted to Fx . This defines a coupling
(σ{x}∪�∗− , σ ′

{x}∪�∗−
). Notice that, restricted to (
\�) ∪ {x} the coupling law satisfies

P(
\�)∪{x} = Px P
\�. (10.17)

We repeat the procedure replacing � by �\{x}.
It is clear that the algorithm above stops after finitely many iterations when � becomes

the empty set. The fact that our construction defines a coupling of γ
(·, η) and γ
(·, η′)
follows inductively from (10.17) and the Reconstruction Theorem 4.3. Property (i) is evident
from the construction, since disagreement at a site is only possible if a path of disagreement
leads from this site to the boundary ∂
. Regarding (ii), we see that, since at each site x ∈ 


we have chosen an optimal coupling, the iteration relation (10.17) shows that the complete

-coupling is also optimal. Furthermore, if x ∈ 
, η,η′ ∈ � and ξ, ξ ′ ∈ �
∩x∗− .

P
(σx 
= σ ′
x | (σ,σ ′) = (ξη, ξ ′η′) on x∗

− ∪ 
∗
−) = Px(σx 
= σ ′

x | (σ,σ ′)

= (ξη, ξ ′η′) on x∗
− ∪ 
∗

−)

= ‖γx( · | ξη) − γx( · | ξ ′η′)‖x

≤ pγ
x .

The optimality of Px explains the second line. Therefore, the POS-Holley Theorem 9.3
applied to the partially oriented kernels defined by P


=

 and ψpγ ,
 shows that P


=

 � ψpγ ,
.

�
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Proof of Theorem 4.20 We use the coupling created in the last proposition. Let μ,ν ∈ G(γ ),
and �,
 be two time boxes such that � ⊂ 
. We have

‖μ − ν‖� ≤ sup
η,η′∈�
∗−

‖γ�( · | η) − γ�( · | η′)‖�

≤ sup
η,η′∈�

‖γ
( · | η) − γ
( · | η′)‖�

= sup
η,η′∈�

P
,η,η′(σ 
= σ ′ in �)

≤ sup
η,η′∈�

P
,η,η′(∃x ∈ �, σx 
= σ ′
x)

≤ sup
η,η′∈�

P
,η,η′(�

=� ∂
)

≤ ψpγ ,
(�
>� ∂
).

The third line is due to the optimality of the coupling and the last one to (ii) or the previous
proposition.

By letting 
 tend to S, we get

‖μ − ν‖� ≤ ψpγ (�
>� −∞).

The right-hand side is zero if ψpγ does not percolate, thus μ and ν coincide on all time
boxes. �

Proof of Corollary 4.21 By hypothesis there exists q such that supx∈S p
γ
x < q < p+

c (S).
Therefore, by the POS-Holley Theorem 9.3 ψpγ � ψq and, as a consequence, ψpγ does not
percolate. �
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